
   
 

1 

American Institute of Aeronautics and Astronautics 

Julia Language 1.1 Ephemeris Reader and Gravitational Modeling 

Program for Solar System Bodies 

Kaela Martin1, Tristan Minkoff 2, Parker Landon3, Brennan Gray4

College of Engineering, Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA 

and 

Damon Landau5

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, USA 

This paper analyzes the advancements to the Julia Language 1.1 Ephemeris and Physical 

constants Reader including the addition of gravitational modeling. Originally written in 

MATLAB, this Julia Language program is intended to be used in for trajectory design. 

Written in an open-source coding language, this ephemeris reader can output the state of 

planetary bodies including asteroids as well as other constants such as gravitational 

parameters. Two primary methods were chosen to calculate the gravitational potentials which 

include polyhedral modeling and spherical harmonics.  

I. Introduction 

Designing space trajectory missions requires an abundance of data over large lengths of time. An ephemeris 

reader can generate this data by interpreting files containing the positions and velocities of objects in space. 

Ephemeris readers have not only helped with trajectories [1, 2], but spacecraft telemetry [3] and satellite orbits [4] as 

well. 

The Julia Language was chosen due to its ability to handle large computations while still being a relatively 

simple software. First released in 2012, Julia is a dynamic language possessing similar attributes to both MATLAB 

and C. Julia is used primarily for computationally strenuous endeavors [5]. The robustness of the language is 

complemented by the user-friendly syntax, and the first stable version, Julia 1.1, was released in August 2019*. Due 

to Julia’s previously unstable pre-1.0 state, the project’s priority was to transfer the Ephemeris reader to Julia 1.1 

and produce an operating function call, boddat. 

 Julia provides the accuracy and speed necessary for an ephemeris tool. Although one documented ephemeris 

reader exists in Julia, JPLEphemeris.jl, this reader purely calculates the positions and velocities of the major bodies 

within our solar system†. The ephemeris reader discussed in this paper can calculate both major and small body 

objects (i.e., asteroids). The initial program was developed in MATLAB and was then moved to Julia and improved 

upon [6, 7]. This project is a continuation from last year’s. 
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NASA’s Jet Propulsion Laboratory has developed several ephemerides in their Development Ephemeris (DE) 

series with DE3 and DE19 as two of the earliest ephemerides [8, 9]. They construct data by integrating differential 

equations of motion but only supported solar system major bodies [10]. Advancements through 1998 provided more 

objects including the major planets, the Sun and three of the largest known asteroids. As space travel progressed, so 

did the ephemeris. Recent Ephemerides include NASA’s Horizons‡, NAIF§, and Small Body Databases**. Utilizing 

these databases, the ephemeris reader is able to output the locations of major and small bodes. 

Gravitational modeling is also an important aspect of building trajectories. With recent missions like OSIRIS-

Rex [12], gravitational potentials of irregularly shaped objects are becoming a necessity. Several methods can be 

used to calculate these potentials. Current modeling approaches for gravitational potentials include polyhedral, 

spherical, and ellipsoidal harmonics [12, 13]. This paper focuses on two main solutions, polyhedral modeling and 

spherical harmonics, and one fast approximation referencing the Brillouin Sphere. Polyhedral modeling accesses the 

Database of Asteroid Models from Inversion Techniques (DAMIT)††. DAMIT manages thousands of asteroid 

properties and models. The ephemeris reader, with its subfunctions, use these models to reproduce the gravitational 

fields of the asteroids. 

II. Implementation 

This project focused on improving the capabilities of the ephemeris reader in the Julia Language as well as 

converting the ephemeris reader to Julia 1.1, now a stable version of Julia. The original ephemeris reader, called 

boddat, was written in MATLAB by the last author. Since the start of this project, boddat was converted over to the 

Julia Language from MATLAB to increase the computational efficiency. Once boddat was converted over to Julia 

and transitioned to the most recent version of Julia, new features were implemented including spherical harmonics, 

or gravmod, polyhedral harmonics, or polymod, and asteroid shape modeling, or astermod. 

By implementing the gravitational modeling functions to the ephemeris reader, the user now has the capability to 

perform high level mission planning for asteroid rendezvous missions. Similar missions such as OSIRIS-REx and 

Hayabusa2 could have used this ephemeris reader as a toolbox during the early mission design phases. This toolbox 

allows the user to obtain data to assist in modeling potential orbits around various asteroids as well as rendezvous 

trajectories to the surface of various asteroids. 

 

A. Ephemeris Reader 
The version presented in this paper is the third iteration of the ephemeris reader. The goals of this version were 

decreased execution time and more robust handling of unexpected input. Additionally, a Julia package was created 

to ease the installation and usage of the program. 

Several techniques were employed to decrease the execution time of the code, with a focus on functionality that 

would be called in batches. The simplest of these techniques was a reduction in memory allocations made by the 

program. As memory in modern computer systems is generally significantly slower than the processor, any retrieval 

from memory has significant performance overhead. As the ephemeris reader uses large arrays and dictionaries to 

store data during execution, there is a significant performance overhead associated with memory allocation and 

access. While some allocations are unavoidable, many were unnecessary, particularly in the case of array copying. 

However, Julia provides an easy method of avoiding copying. Consider the following code 

 

B = A[1, :] 

 

This code creates an array B, which contains the first row of array A. In Julia, array B would be a copy of the 

requested data of array A, stored elsewhere in memory. Copying has the advantage of making the data stored in 

 
‡ Data available online at https://ssd.jpl.nasa.gov/horizons.cgi [retrieved 15 Nov. 2019] 
§ Data available online at https://naif.jpl.nasa.gov/naif/ [retrieved 15 Nov. 2019] 
** Data available online at https://ssd.jpl.nasa.gov/sbdb.cgi [retrieved 15 Nov. 2019] 
†† Data available online at https://astro.troja.mff.cuni.cz/projects/asteroids3D/web.php [retrieved 15 Nov. 2019] 
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arrays A and B independent of each other; however, if array B is never modified this advantage is not useful. Julia 

provides the view function for such situations 

 

B = view(A, 1, :) 

 

This code instead makes B a reference to the data in A, sharing the same part of the memory. While the same 

effect could be accomplished through using A[1,:] in place of B, use of the view function also has the benefit of 

making code more readable. In this version of the ephemeris reader, the view function is used in place of array 

copying where possible, most notably in the spline evaluation code which forms the core of the ephemeris 

interpolation functions. 

Another major decrease in execution time came from the restructuring of the code to avoid unnecessary 

overhead. In the previous version of the ephemeris reader, all ephemeris data was accessed through the boddat 

function. Since the boddat function could redirect to any number of internal functions, some time was spent on 

parsing the user’s input and converting it into a function call. The boddat function also saved the dictionary used to 

store data between executions every time it was executed. Since modern mass storage devices are extremely slow 

relative to the processor and memory speeds, much of the execution time of boddat was spent saving data. 

To alleviate the overhead associated with the boddat-centered use structure, much of the code was re-architected 

to allow users to directly call the required subfunctions. Migration away from boddat resulted in an order-of-

magnitude gain in performance. For a comparison, consider the form of a previous boddat function call 

 

boddat([“R”], [399], dict) 

 

This function call would retrieve the position of Earth relative to the Solar-System Barycenter at the current time. 

In the new, subfunction-driven structure, a call to a subfunction would be made instead: 

 

ephem(399, Dates.datetime2julian(now()) - 2451545., EphemType.position, dict) 

 

Like the previous boddat call, the body, ephemeris type, and a dictionary must be provided. However, unlike 

boddat, these subfunctions do not allow for calls without a specified input time, which is provided as the second 

argument. The time must be a Julian date in the J2000 epoch. 

These subfunctions do not handle many of the tasks boddat once handled to improve performance. Since users 

must manually perform many of the tasks that boddat once handled, documentation was created to guide the users 

through proper use of the code. The boddat function was left available for applications that are not performance 

centric. 

As users are now encouraged to directly call subfunctions, there is far more variability of input to these 

subfunctions that must now be accounted for. Several steps were taken to account for this variability. Many 

arguments were type annotated to ensure that they could be properly handled. As Julia is a dynamically typed 

language, it does not require type annotations for function arguments to execute properly and will automatically 

generate versions of functions to handle different input argument types. However, the subfunctions of the code are 

not robust enough to handle all types of input, and many input types do not make sense in the contexts of the 

functions. For example, consider the following function declaration: 

 

position(body, time) 

 

Ideally, this function returns the position of a body at a given time. However, just from this declaration it is 

impossible to know what the types of the input must be. The body argument could be an integer, representing a SPK 

ID, or a string. Type annotating functions alleviates this problem: 

 

position(body::Integer, time::Float) 
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In this example, it is clear that the body argument must be an integer. Type annotating the arguments of functions 

restricts what inputs the user can provide to types that can be properly processed. Julia will also give users 

suggestions on input types that are available when provided with invalid input, giving users some guidance on how 

to properly call the function they are trying to use. 

Additionally, code to check the inputs was inserted into many functions to check for inputs that are type correct 

but invalid. Accompanying this change are more descriptive error messages and warnings to make the user aware of 

how their input is invalid. Many new error messages and warnings were also added in the code itself in case of 

unexpected behavior. For example, consider the following function call: 

 

gettype(399) 

 

This function call would attempt to retrieve the spectral type for Earth. Since Earth is a major body, it does not 

have a spectral type. Previously, this function call would fail without any explanation. Instead, it now gives a 

descriptive warning message of the problem: 

 

Warning: Cannot retrieve spectral type of major body 399 

 

Descriptive error and warning messages like this message give the user an explanation of why a function call 

failed instead of leaving them to debug the problem without any indication of why the failure occurred. 

Additionally, these new errors and warnings defend against formatting changes to the data sources on which the 

code relies. Any changes to the data sources would previously result in an unexplained failure of the data retrieval 

code, which was very difficult to debug. Instead, the current version gives descriptive error messages indicating that 

formatting changes have occurred. 

Lastly, the code was placed in a Julia package which can easily be installed through the Julia terminal. Unlike the 

previous version of the ephemeris reader, the user no longer has to declare the dependencies of the code at the start 

of their own code, instead issuing a single using statement for the new package which incorporates all dependencies 

automatically.  

Currently boddat is able to provide the user with state data for small bodies. However, mission planning may 

require more information than the location of the asteroid. Therefore, a separate subfunction was created to assist in 

gathering various properties pertaining to asteroids, this is discussed in the next section. 

 

B. Asteroid Property Identification 

The asteroid property identification function, astermod, is able to provide the user with specific properties of user 

requested asteroids by locating and parsing the information from the DAMIT database. For example, the input is 

similar to 

 

astermod([“asteroid 1” “asteroid 2”],[“property 1” “property 2” “property 3”]) 

 

where “asteroid 1” and “asteroid 2” are the specific asteroids that the user is calling, and “property 1” through 

“property 3” are the specific properties that the user is requesting. The example input for astermod illustrates the 

user calling two asteroids and three properties. However, the user can call as many asteroids and properties that they 

may require. Both the asteroid names and property names must be input as strings, if the user does not input the 

values as strings the function will output text similar to 

 

“Not a valid input” 

 

Once the user properly inputs the requested asteroids and the properties, astermod will output the values as a 

matrix. An example of astermod calling asteroids Thalia and Europa, along with properties beta, equivalent 

diameter, and period can be shown 

 

astermod([“Thalia” “Europa”],[“beta” “equivalent diameter” “period”]) 

 

The input would yield the following results 
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[“asteroid id” “model id” … “equivalent diameter” “period”] 

[“===“, “===“, “===“, “===“, “===“] 

[“115”, “122”, “-45”, “107”, “12.31241”] 

[“115”, “123”, “-69”, “107”, “12.31241”] 

[“115”, “1857”, “-46”, “115”, “12.31241”] 

[“115”, “1858”, “-74”, “114”, “12.31241”] 

[“===“, “===“, “===“, “===“, “===“] 

[“125”, “135”, “35”, “293”, “5.629958”] 

[“125”, “463”, “39”, “319”, “5.629959”] 

[“===“, “===“, “===“, “===“, “===“] 

 

The first row of the output acts as a key that informs the user on what each column of the output contains. The 

row of “===” is an indication of a change of output. For example, the second row separates the key from the output 

of the first asteroid, while the seventh row separates the output from the first asteroid from the output of the second 

asteroid. The output also shows the model ID associated with each asteroid. The model ID is the asteroid’s model 

identification number. Therefore, astermod will output a number of rows for a specific asteroid that is equivalent to 

the number of model IDs associated with that specific asteroid. Shown in the output, Thalia has four separate model 

IDs; therefore, Thalia has four sets of properties corresponding with each model ID.  

When planning a mission to an asteroid, the user must identify the trajectory of the asteroid, any necessary 

properties such as equivalent diameter, and the gravitational field of the asteroid. The user is able to obtain both the 

trajectory and the properties of asteroids from boddat and astermod respectively. To account for the third piece of 

information that the user will require for asteroid mission planning, the gravitational field of the asteroids, three 

different methods to calculate the gravitational field are discussed in this paper. The first method utilizes the 

DAMIT database, in order to download asteroid shape files to construct a polyhedron model, which is discussed 

further in the next section. 

 

C. Polyhedron Gravitational Modeling 

 The first approach to modeling the gravitational field of a body discussed in this paper is the constant-density 

polyhedron method. The polyhedron approach allows the user to model various geometries including concavities in 

its surface (craters), overhangs, interior voids (caves), and holes all the way through the body. The accuracy of the 

polyhedron approach is only limited by the size of the mesh of the body. Therefore, the gravitational field is exact 

for the given shape and density of the body. Two assumptions associated with the polyhedron approach are that (1) 

the body has a constant density and (2) the body is a polyhedron.  

To model the gravitational potential of a body, the function downloads a text file from the DAMIT database 

containing the locations of each of the polyhedron’s vertices and their connective topology. For example, the 

asteroid Kleopatra was modeled as a polyhedron using the information from the DAMIT database, shown in Fig. 1. 
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Fig. 1: Polyhedron model of Kleopatra 

 

By using the geometric information from the DAMIT database the function is able to calculate the gravitational 

potential, attraction, and the Laplacian of every asteroid body available in the database. The polyhedron method 

minimizes the error by using the information from the DAMIT database to create a mesh that converges on the 

surface of the body, which is shown in Fig. 1. The following formulation to calculate the gravitational potential, 

attraction, and the Laplacian was used from Werner and Scheeres [12]. The equation used to calculate the 

gravitational potential is represented by 

 
1 1

2 2
e e e e f f f f

e edges f faces

U G r E r L G r F r  
 

= −    (1) 

where U is the gravitational potential, G is the gravitational constant, σ is the bulk density, e as a subscript represents 

the specific edge in each iteration, 𝑟𝑒̅  is a vector from the field point to any point on edge e, 𝐸𝑒 is the dyad associated 

with edge e and face f, 𝐿𝑒 is the potential of a 1D straight wire for edge e of face f, f  as a subscript represents the 

specific face in each iteration, 𝑟𝑓̅ is a vector from the field point to any point on face f, 𝐹𝑓 is the dyad associated with 

face f, and 𝜔𝑓 is the signed area of face f projected onto the unit sphere centered at the field point. The equation used 

to calculate the dyad associated with edge e and face f is represented by 

 12 12 21
ˆ ˆ ˆ ˆA B

A BE n n n n= +   (2) 

where A as a subscript represents the specific plane of interest in each iteration, B as a subscript represents the plane 

adjacent to plane A, ˆ
An is the normal vector facing outwards from plane A, 12

ˆ An  is the normal edge vector which is 

perpendicular to the edge and points outwards, ˆ
Bn is the normal vector facing outwards from plane B, and 12

ˆ Bn  is the 

normal edge vector which is perpendicular to the edge and points outwards from plane B. These vectors can be seen 

in Fig. 2. 
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Fig. 2: Two face planes and their face normal and edge normal vectors 

Based on Werner and Scheeres [13] 

 

Equation 2 contains the subscripts 12 and 21. These subscripts indicate the edge that is connecting the two 

surfaces and the orientation the edge is in with relation to the surface. The edge connecting the two surfaces in Fig. 2 

is indicated by vertices 1 and 2. Therefore, for this specific edge, 𝐸𝑒 is equal to 𝐸12. The edge dyad, 𝐸𝑒 , is the sum of 

two outer products and creates a symmetric 3 x 3 matrix. The face dyad, 𝐹𝑓, is calculated by taking the outer product 

of each face vector with itself. The face dyad is represented by 

 ˆ ˆ
f f fF n n=   (3) 

The face dyad, like the edge dyad, is also a symmetric 3 x 3 matrix. The equation used to calculate the potential 

of a 1D straight wire is represented by 

 lne

a b ed
L

a b ed

+ + 
=  

+ − 
  (4) 

where 𝑎 represents the distance between the field point and one end of the edge e, 𝑏 represents the distance between 

the field point and the other end of edge e, and 𝑒𝑑 is the edge length. The signed area of face f projected onto the 

unit sphere centered at the field point is represented by 

 
( ) ( ) ( )

1 2 3

1 2 3 1 2 3 2 3 1 3 1 2

2arctanf

r r r

r r r r r r r r r r r r


  
=   +  +  +  

  (5) 

The original 𝜔𝑓 equation has been simplified due to the assumption that the polyhedron is a triangle. The 

function is able to utilize this assumption because the polyhedron’s vertices and their connective topology from the 

DAMIT database form triangular surfaces. The subscripts 1, 2, and 3 correspond with vertices of each of the 

triangular surfaces, and 𝑟̅ is the vector from the field point to the corresponding vertex. The 3D polyhedron 

attraction vector is represented by 

 e e e f f

e edges f faces

U G E r L G F r  
 

 = − +    (6) 
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The polyhedron attraction vector points in the direction of the body while its magnitude is the gravitational 

acceleration experienced at the location of the field point. In order to determine whether the field point is inside or 

outside the asteroid, the function calculates the Laplacian which is represented by 

 
2

f

f faces

U G 


 = −    (7) 

When the field point is inside the polyhedron, the Laplacian is equal to -4π, or Poisson’s equation. However, 

when the field point is outside the polyhedron, the Laplacian is equal to 0, or Laplace’s equation. The Laplacian 

calculation comes at little to no cost because 𝜔𝑓 is already calculated in both the gravitational potential and the 

attraction equations.  

The primary output for this function is the 3D polyhedron attraction vector. To obtain the attraction vector the 

user can either input the field point with respect to the asteroid or the user can input both the field point and the 

asteroid with respect to another body. The user can specify an asteroid by using the asteroid name, the SPK-ID, or 

the DAMIT database asteroid ID. The implementation of the function to the main ephemeris is currently ongoing 

and is projected to be completed within the upcoming months.  

Although gravitational fields of small bodies can be calculated using polymod, many asteroids do not have the 

necessary shape files to construct the polyhedron shape. Therefore, a function, gravmod, was created to calculate the 

potentials of these bodies using spherical harmonic expansions, which is discussed in the next section. 

D. Spherical Harmonics 

Spherical harmonics are frequency-space representations of functions defined over a sphere. Spherical harmonics 

provide insight to electron configurations, magnetic fields, and solutions for the Schrödinger equation‡‡. They are 

also useful to represent gravitational fields of planetary bodies. The previous version of gravmod calculated to the 

fourth-degree polynomial. The objective of this project was to surpass this limit and pursue higher orders of 

harmonics. Due to the computational complexity, most harmonic solutions can be calculated up to the 150th degree 

before over and under-flow [14]. 

The spherical harmonic function, gravmod, produces the potential by way of harmonic expansions using specific 

user inputs. 

 

potentialB = gravmod([“body”], [Pos], [t]) 

 

where ‘body’ is the reference string to the requested body, ‘Pos’ is the spacecraft’s position in kilometers with 

respect to the Sun in Cartesian coordinates, and ‘t’ is the defined time in days past non in TDB on J2000.  

For example, the inputs to find potentials around Earth would be similar to 

 

gravmod([“Earth”],[-1.5*10^7,1.5*10^8,-7*10^3]) 

providing the output 
2

2

km
6.91e8 

s
  

 

which is the potential on the spacecraft at the user defined location. 

 

Using converging spherical harmonic expansions, and an infinite series parameterized in spherical coordinates,

( ), ,r   , the gravitational potential for both major and small bodies can be represented by 

 
‡‡ Data available online at https://cs.dartmouth.edu/~wjarosz/publications/dissertation/appendixB.pdf [retrieved 15 

Nov. 2019] 



   
 

 
 

9 

American Institute of Aeronautics and Astronautics 

 ( )( ) ( ) ( )( ) ( )
1

0 0

cos cos cos sin

n
n

mb
nm nm n

n mb c

RGM
U a m b P m

R r
   

+


= =

 
 = +   

 
    (8) 

where G is the gravitational constant, M is the reference body mass, Rb is the reference body radius, rc is the 

spacecraft’s location from the body, n is the degree, m is the order of expansion, 
m

nP is the normalized Legendre 

polynomials, and anm and bnm are the harmonic coefficients. 

The radius, prime meridian, and gravitational parameter are procured from the boddat function itself to determine 

the potential. Because the latitude of the spacecraft is measured from the prime meridian of the body, the prime 

meridian direction cosine matrix (DCM) will be used. This matrix is provided from boddat as the transformation 

from the body-fixed frame to EMO2000, which is the frame of the spacecraft position input. Additionally, the 

latitude, longitude, and the spacecraft’s position, rc, can be determined using the DCM. The spacecraft’s position is 

with respect to the reference body, solved by both positions in respect of the Sun. The function call requires the user 

to input the spacecraft with respect to the Sun as well as the time at which both the body and spacecraft are at that 

position. 

The associated Legendre function is calculated according to a specific degree and order, n and m. The 

coefficients for zonal harmonics, or when m = 0, are solved using  

 ( )( )
2

2

1
3sin ' 1

2
nm

b

a dM
MR


= −   (9) 

Lastly, the coefficients for when n m=  or n m , are calculated differently. These sectorial and tesseral 

harmonics use 

 ( )( ) ( )
2( )!

sin ' cos '
( )!

n m

nm nn

b

n m
a P m dM

MR n m
  

−
=

+    (10) 

 ( )( ) ( )
2( )!

sin ' sin '
( )!

n m

nm nn

b

n m
b P m dM

MR n m
  

−
=

+    (11) 

where 

 
2 2 2   = + +   (12) 

In Eqs. 9 to 12, n is the degree, m is the order of expansion, M is the mass of the spheroid, '  is the latitude of 

the mass element dM in the body-fixed coordinates, ' is the longitude of the mass element dM, and , ,  and 

are fixed coordinates to the reference body. A subfunction of gravmod calculates the approximate coefficients prior 

to the calculation of the potential. 

Spherical harmonics may be best approximation for bodies without polyhedral models, but due to the infinite 

expansions over and underflow becomes an issue. Another drawback is the amount of time each value needs to be 

calculated. To combat these drawbacks, a final program was developed that assumes a near perfect ellipsoid and 

uses moments of inertia to solve for the potentials.  

E. Brillouin Sphere Approximation 

Simplified gravitational models can be produced by using approximated shapes and densities. By approximating 

the shape and density of a body, the potentials can be calculated very quickly with low chances of over and 

underflow, or when such programs lose accuracy due to too small or too large of numbers. However, this method 

requires two separate solutions, internal potentials and external potentials. The program also references the Brillouin 

sphere for calculation. The Brillouin sphere is the smallest sphere that encompasses the entire body [14]. The 

potentials are defined into two different categories that require two separate solutions, internal potentials that are 
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inside the Brillouin sphere, and external potentials that are outside the Brillouin sphere. This paper utilizes the 

simplified equations for the external potentials from the Herrera-Sucarrat and Palmer paper [15]. 

Due to the computational competence required for the previous methods implemented, a final program was 

developed that assumes a tri-axial ellipsoid with constant density to reduce complexity. The program produces an 

ellipsoid that is encompassed in the corresponding Brillouin sphere as shown in Fig. 3. 

 
Fig. 3: Brillouin Sphere example using Jupiter and its rotational flattening 

 

The colored spheroid in Fig. 3 is Jupiter and the black sphere is the Brillouin Sphere. Jupiter’s largest radius is 

located on the z-axis at zero. Both spheres are centered directly on the origin, allowing easy calculation for the 

moments of the body. Currently only the potentials outside of the Brillouin Sphere can be calculated. 

Provided the center of gravity is aligned with the origin of the coordinate system, the mass moments can be used 

to solve the potential up to the second order. If the coordinate system coincides with the origin, the mass moments of 

inertia are 

 ( )2 2

xx bI M y z= +   (13) 

 ( )2 2

yy bI M x z= +   (14) 

 ( )2 2

zz bI M x y= +   (15) 

where x, y, and z are the radii lengths of the ellipsoid, and the products of inertia are zero. Using these inertias, the 

potential can be written as 

 
( )

( ) 2 2 2

3

2 2 22 2 22 2 2

1 3
1

2

xx yy zzI x I y I ztr IGM
U

M x y z Mx y zx y z

   + + 
= + −    + ++ ++ +      

  (16) 

where G is the Gravitational constant, M is the mass of the body, I3 is the diagonal matrix with elements Ixx, Iyy, Izz and 

x, y, and z are the Cartesian coordinates of the spacecraft from the origin. This formula is known as MacCullagh’s 

formula. The coordinates of the spacecraft must be outside of the Brillouin Sphere for the potentials to be calculated. 

Currently this function is being developed and tested in MATLAB but will be transitioned to Julia once completed. 

III. Future Implementation 

Along with the implementation of the polyhedron gravitational modeling, there are many opportunities for future 

improvement in regards to new features and additional compatibility. Modifications to be implemented in the near 
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future include adding higher order spherical harmonics and expanding to ellipsoidal harmonics in the current Julia 

1.1 version. Another expansion would be the ability to download and present asteroid shape files from the DAMIT 

database. Lastly, implementing a function for the geometric albedo for both major and small body objects. To 

improve current code functions, future work would also consist of optimizing gravmod, polymod, and astermod to 

reduce the run time and increase the computational efficiency. Another opportunity to increase boddat’s capability is 

to implement features that enable compatibility with Spice (.bsp) files.  

 

IV. Conclusion 

 Julia Language 1.1 Ephemeris Reader and Gravitational Modeling Program for Solar System Bodies was 

created to simplify and aid in future space missions as well as implement the Julia Language within NASA. The 

ephemeris reader works by accessing multiple NASA databases and directories to identify and retrieve the user 

requested values to assist in space mission planning. Unlike other ephemeris readers, boddat is able to retrieve 

information on both major and small bodies. This feature, in conjunction with the astermod function, provides the 

user with a wider spectrum for mission planning by granting access to asteroid properties and states. Additional 

functions were implemented to calculate the gravitational field of both spherical and non-spherical bodies. These 

functions allow the user to develop any asteroid related missions such as reconnaissance or rendezvous-based 

missions. The third-generation reader is also compatible with Julia 1.1. The Julia team has incorporated backwards 

compatibility after Julia version 1.0; therefore, the current reader is compatible with every version of Julia that is 

released after 1.0. The authors are in the process of making the current version of the package open-source and 

available to the public. The ephemeris reader will be an easy to use tool, for all users, that will assist in the 

astrodynamics aspect of preliminary space mission design.  
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